Search results for "Schrödinger dynamic"

showing 2 items of 2 documents

Population dynamics based on ladder bosonic operators

2021

Abstract We adopt an operatorial method, based on truncated bosons, to describe the dynamics of populations in a closed region with a non trivial topology. The main operator that includes the various mechanisms and interactions between the populations is the Hamiltonian, constructed with the density and transport operators. The whole evolution is derived from the Schrodinger equation, and the densities of the populations are retrieved from the normalized expected values of the density operators. We show that this approach is suitable for applications in very large domain, solving the computational issues that typically occur when using an Hamiltonian based on fermionic ladder operators.

Physicseducation.field_of_studyPopulation dynamicsApplied MathematicsPopulation02 engineering and technologyExpected value01 natural sciencesSchrödinger equationsymbols.namesake020303 mechanical engineering & transportsOperator (computer programming)Ladder operator0203 mechanical engineeringTrivial topologySchrödinger dynamicsModeling and Simulation0103 physical sciencessymbolsStatistical physicsOperatorial modelseducationHamiltonian (quantum mechanics)010301 acousticsBosonApplied Mathematical Modelling
researchProduct

Non-hermitian operator modelling of basic cancer cell dynamics

2018

We propose a dynamical system of tumor cells proliferation based on operatorial methods. The approach we propose is quantum-like: we use ladder and number operators to describe healthy and tumor cells birth and death, and the evolution is ruled by a non-hermitian Hamiltonian which includes, in a non reversible way, the basic biological mechanisms we consider for the system. We show that this approach is rather efficient in describing some processes of the cells. We further add some medical treatment, described by adding a suitable term in the Hamiltonian, which controls and limits the growth of tumor cells, and we propose an optimal approach to stop, and reverse, this growth.

General Physics and Astronomylcsh:AstrophysicsTumor cells01 natural sciencesArticle010305 fluids & plasmassymbols.namesakeOperatorial models; Schrödinger dynamics; non Hermitian Hamiltonian; Tumoral proliferation modelSchrödinger dynamicParticle number operatorlcsh:QB460-4660103 physical scienceslcsh:Science010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical physicsPhysicsMedical treatmentOperatorial modelOther Quantitative Biology (q-bio.OT)Non hermitian HamiltonianTumoral proliferation modelQuantitative Biology - Other Quantitative Biologylcsh:QC1-999Birth–death processFOS: Biological sciencesSchrödinger dynamicsCancer cellsymbolslcsh:QOperatorial modelsHamiltonian (quantum mechanics)lcsh:PhysicsSelf-adjoint operator
researchProduct